
Comparative Analysis of A* and RRT*
Pathfinding Algorithms for Autonomous Drone

Navigation in Different Environments

Colin Brennan Nicholas Ciordas Samhita Pokkunuri
colinpbrennan07@gmail.com nicholas.ciordas@gmail.com samhita.p@yahoo.com

Nickolas Regas Adam Wahid Will Wands
nicka.regas@gmail.com adamw@tutamail.com wowands@gmail.com

Shreya Srikanth*
ss3645@scarletmail.rutgers.edu

Governor’s School of New Jersey Program in Engineering & Technology
July 26, 2024

*Corresponding Author

Abstract—Unmanned Aerial Vehicles (UAVs) have developed
significantly in recent years, allowing for the facilitation of
improvements in many different aspects. The importance of navi-
gating various environments autonomously cannot be understated
and may allow for expanded opportunities when considering
future utilization ranging from military to personal use. This
research compares different pathfinding algorithms and their
benefits and drawbacks in distinct environments. The perfor-
mances of each algorithm in the mazes could be used to determine
when to use each algorithm when applied to real-world scenarios.
The environments were broken up into four kinds of mazes:
ladder mazes, single solution mazes, high-density obstacle mazes,
and low-density obstacle mazes, with each representing a unique
real-world environment. The pathfinding algorithms A*, a grid-
based algorithm, and Rapidly-exploring Random Tree* (RRT*),
a sampling-based algorithm, were visualized using Pygame and
compared along four metrics through real-world testing: flight
time, compute time, flight distance, and margin of error (dis-
placement from the goal node). These metrics showed that A*
performed three to five times faster than RRT* in compute
time for every maze type. Furthermore, RRT* performed better
than A* in flight time and flight distance for low-density, high-
density, and ladder mazes; however, it performed similarly to A*
in single solution mazes. These results provide valuable insight
into selecting the most appropriate algorithms based on specific
situational needs.

I. INTRODUCTION

Autonomous navigation has recently become at the forefront
of various developmental technologies. Numerous algorithms,
including deep learning and Ground Control Systems (GCS)
[1], enable drones to traverse environments filled with ob-
stacles and varying terrain without human error. These algo-
rithms allow drones to simulate real-life applications, ranging

from precision agriculture and ecological sampling to search
and rescue and military-based operations. As of 2024, the
autonomous drone navigation market has expanded to $9.73
billion (USD) and is expected to grow at a Compound Annual
Growth Rate (CAGR) of 15.97% by 2030 [2]. This predicted
growth underscores the importance of designing autonomous
UAV systems that are deployable across various professions,
offering cost-efficiency and safety advantages through simula-
tions before field testing.

The emergence of pathfinding algorithms to navigate these
complex environments has become crucial for enabling robust
outdoor experimentation. Algorithms such as A* and Rapidly-
exploring Random Tree (RRT*) are extensively researched
in this domain. The A* algorithm is renowned for its accu-
racy and efficiency in finding the shortest path in grid-based
environments, while RRT* excels in precision and handling
dynamic obstacles. Thus, there is a critical need to develop
drone navigation systems that can employ these algorithms to
accommodate all types of UAVs and situations.

II. BACKGROUND

A. DJI Tello EDU

The DJI Tello EDU quadcopter was used to test each
pathfinding algorithm in different mazes. The DJI Tello EDU
has the advantage of easy programmability, as it can function
with Scratch, Python, and Swift [3]. Furthermore, the EDU
can pair with the SDK 2.0 development toolkit to convert the
search algorithm’s results into drone movement [4].

1

B. Pygame Library

To visualize both algorithms, the program utilized the
Python library Pygame, which includes variable modules for
displaying the maze layout, the solution path, and key points
such as the start and end locations. In this case, the code
updated the maze layout and the corresponding solution while
illustrating the starting and ending points. This made it easier
to understand the functionality of each algorithm and map out
how the drone would move in a similar environment [5].

C. Types of Mazes

Single solution mazes are useful due to their long winding
paths and reliability in producing extreme test environments
for the drone. They represent crowded indoor situations where
there is only one path from the start to the exit position. An
ideal single solution maze has no loops (i.e., places where the
path runs back into itself) but has dead ends. This complexity
provides a rigorous test of the drone’s navigation capabilities.

Random obstacle mazes feature obstacles placed at random
coordinates with a predefined density to simulate more ar-
bitrary areas such as forests. Adjusting the randomness and
density of obstacles for diverse test scenarios helps closely
mimic aerial navigation conditions. For example, low-density
obstacle mazes feature open areas that enable the drone to
build up speed and allow it to make shallow turns to avoid
obstacles. Conversely, high-density obstacle mazes force the
drone to take steep turns in rapid succession.

Ladder mazes generate large obstacles that must be com-
pletely circumnavigated for the drone to progress to the
goal node while leaving certain areas wide open, allowing
the algorithm to choose from multiple paths. This maze is
representative of a city arrangement where a drone can take
multiple bypass routes around large buildings. This maze tests
the algorithm’s ability to select the most efficient path even
when multiple options are presented.

D. Dijkstra and A* Algorithms

Dijkstra is a grid-based pathfinding algorithm that can
output the shortest path between two predefined nodes by
utilizing a cost function. A cost function is a mathematical
equation determining the ”price” (in this case, distance) of
certain actions, which is then used to maximize the program’s
efficiency. In this case, the cost function is distance-based,

F (N) = G(N)

with its parameter being the distance between the node the
algorithm is currently exploring and the start node. This value
is repeatedly updated with each program iteration to reflect the
smallest known value for each node. The algorithm begins by
assigning a value of infinity to each node, the only exception
being the source node’s value which is set to zero. The starting
node branches out to its neighboring nodes, defining the cost
of each neighboring node based on the cost of their respective
connections. The node with the smallest value is then selected,
and its neighbor’s values are calculated [Fig. 1]. As this
process continues, the cost of certain nodes (distance from

current to starting node) becomes optimized as surrounding
weights are redefined [6]. Each node can undergo relaxation,
or a cost reduction once, in which a new, more optimal path
is discovered from the starting node to the current node. One

Fig. 1: Dijkstra Pathfinding Algorithm

advantage of Dijkstra is its utilization of a parent dictionary,
which stores each node’s immediate predecessor. Since the
algorithm can simply retrace its steps through the parent
dictionary once it computes, reconstructing the shortest path
from the start node to the goal node is very straightforward.
While Dijkstra is effective, it struggles with solving large,
complex mazes, as it has no heuristic implementation (the
algorithm’s ability to estimate its distance to the goal node).
For example, it would reward traveling away from the goal
node if the path leading away from the goal is shorter than
the path leading toward it.

A*, another grid-based search algorithm, leverages a heuris-
tic to enhance performance. Like Dijkstra’s approach, A*
operates on a grid of nodes with predefined obstacles, a
designated start point, and a fixed goal point. However, A*
distinguishes itself by incorporating a heuristic that estimates
the distance from the evaluated current node to the goal node.
This heuristic guides the algorithm to prioritize exploring
paths that are closer to the goal, thereby potentially reducing
unnecessary exploration and optimizing the search process. [7]

The cost function equation A* utilizes is the sum of two
functions:

F (N) = G(N) +H(N)

G(N) represents the distance between the starting and cur-
rent node, and H(N) represents the heuristic, the straight line
distance between the current and goal node. During the A*
algorithm, the F(N) of the surrounding nodes is calculated,
the node with the smallest value is selected, and the process
repeats until the goal is reached. A* calculates the F(N) for
the current node’s neighbors, appends each to a priority queue,
and chooses to explore the node with the lowest F(N) while
recording its parent node. As more nodes are explored, the

2

Fig. 2: A* vs. Dijkstra
Source: Adapted from [9]

F(N) of neighboring nodes that may have been previously
evaluated are recalculated to ensure that the shortest possible
paths are being considered. If the new F(N) is lower when
coming from a different parent, that node’s parent is updated
to reflect the new path [7]. Eventually, the algorithm will
return the quickest path to the goal, where its added heuristic
effectively reduces the number of nodes the algorithm has to
explore.

A* often performs an order of magnitude better than its
predecessor. When the size of the maze is at 300 nodes, A*
can comfortably complete the maze in under 0.05s, while
Dijkstra’s algorithm takes 0.5s on the same machine. This
discrepancy is due to Dijkstra’s algorithm having to search
a much higher proportion of those nodes when compared to
A* [8].

As can be seen, the inclusion of this heuristic fundamentally
alters A*’s approach and differentiates it from Dijkstra’s
approach. While Dijkstra’s algorithm guarantees finding the
shortest path by exploring all possible nodes uniformly, A*
narrows its search based on the heuristic guidance. This
heuristic-informed decision-making enables A* to often reach
the goal more efficiently, especially in scenarios where the
grid is large and complex.

However, the success of A* heavily depends on the quality
of the heuristic chosen. A well-designed heuristic can sig-
nificantly improve the algorithm’s performance by accurately
estimating the remaining distance to the goal, guiding A* more
swiftly toward the optimal solution. However, an overly opti-
mistic or inaccurate heuristic might lead A* astray, potentially
missing the optimal path or increasing computational overhead
[10].

E. RRT and RRT* Algorithms

The Rapidly-exploring Random Tree (RRT) algorithm is a
sampling-based path planning algorithm designed to efficiently
search spaces consisting of multiple dimensions [11]. It is
easily scalable from two to three dimensions and beyond,
whereas more traditional search methods become computa-
tionally impractical at this size. While A* is grid-based and
must commit all nodes to memory regardless of exploration,
RRT (sampling-based) only needs to keep track of explored
nodes. As the number of dimensions increases, the state

space A* must commit to memory grows drastically, but RRT
remains unaffected.

The RRT algorithm operates by generating random points
within a specified region and connecting these points to the
nearest node in the existing tree. A new node is added along
the line segment connecting the random point to the nearest
node at a distance capped by a predefined step size. If this new
node is unreachable (i.e. the path to reach it passes through
an obstacle), it is discarded, and a new point is generated.
This process repeats iteratively, with the tree expanding until
it reaches the goal. To improve efficiency, RRT biases the
generation of points towards large unexplored areas, reducing
redundant exploration in densely populated regions. While
RRT effectively finds a feasible path in a gridless environment,
it does not optimize it. The resulting route can be jagged and
inefficient since RRT does not recalibrate or refine it after it is
initially found. This can be problematic for applications such
as autonomous drone navigation, where a smoother path is
essential [12].

RRT*, the successor to RRT, addresses these limitations
by introducing iterative path optimization. Unlike RRT, RRT*
not only finds an initial feasible path but also refines it over
time. After generating an initial path, RRT* continues to add
new nodes and re-evaluate existing connections. It does so
by searching within a specified radius around each new node
to identify potential nodes for re-connection, which helps in
minimizing the path length and improving overall path quality.

RRT* dynamically adjusts the connections between nodes
to ensure the path is continuously optimized. While improving
path quality, this refinement process increases the algorithm’s
computational complexity and execution time. The trade-off
between path optimality and computational efficiency is a key
consideration in real-world applications.

In many circumstances, RRT* does require four times
more computation time than its predecessor (sometimes more
depending on termination criteria), but this drawback is coun-
tered by the algorithm being asymptotically optimal [13].
While RRT could run forever and maintain a non-optimal
solution, RRT* will approach the optimal solution with each
iteration of the algorithm. For this reason, implementing a
termination criterion is crucial for enhancing the practical per-
formance of RRT*. Due to the possibility of infinite iterations,
developers must terminate the code after it iterates a specific
number of times. Importantly, developers must balance the
number of iterations or node additions to achieve a feasible
trade-off between computational expense and path quality.

III. METHODS

This research compared the performance of A* and RRT*
in various types of mazes to simulate different real-world
environments. The Python library ’mmaze’ was used to create
single solution mazes, storing maze nodes in an array where
obstacles were denoted by one and open nodes by zero. The
maze was drawn using the Pygame library, with obstacles
in black and nodes in white [5]. The Kruskal algorithm was

3

applied to create a minimum spanning tree, eliminating closed
loops [14].

Two additional types of mazes, low and high-density ob-
stacle mazes, could be created by adjusting the number of
randomly generated obstacles. Both mazes ensured blocks
could not be drawn close to the top-left and bottom-right
corners to prevent from enclosing the maze’s start and end.

All mazes were randomly generated to facilitate rapid
testing and the collection of large data samples, minimizing
outlier effects on the findings’ accuracy.

After Pygame simulations, the code was adapted for drone
movement using the Tello SDK 2.0 and its commands [4]. A*
employed a grid-based coordinate system based on the size
of each obstacle in the maze. RRT* is not restricted to the
size of the obstacles and can place a node at any point. Both
algorithms executed drone movement similarly, controlling the
Tello EDU with commands relative to its current position.

A. A* Program

The algorithm constantly maintained a priority queue
open_set to keep track of nodes that were being currently
evaluated. The initial node, defined by start, began the pro-
cess. The algorithm checked for the g_score, representing
the distance from that node to the starting point, the h_score,
representing the heuristic value, and the f_score of the
node, which is the total cost value of reaching the current
node from the starting node, including its estimated distance
from the goal. All nodes surrounding the starting node became
part of the open_set, and the algorithm selected the node
with the lowest f_score to explore first, which became
the new source node. This process repeated continuously
until the goal node was detected. When this occurred, the
came_from dictionary reconstructed the shortest path by
tracing backward from the goal to the starting position. A*
code can be referenced in section VII-A.

B. RRT* Program

RRT* generated a path using the branching node tech-
nique. The algorithm then optimized this path over multiple
iterations. Each iteration generated more nodes, reducing the
number of jagged movements and turns, thus slowly making
the path shorter.

The algorithm initialized a start and goal node and used
a sampling-based pathfinding system to create a tree rooted
at the start node that branched out and eventually reached
the goal node. This gradual expansion occurred by adding
randomly sampled nodes (within the bounds of the maze and
max guess radius defined at the start of the algorithm). During
this process, the step_size parameter constantly dictated
the max distance between each node and the random tree
configurations branching out. This parameter was essential, as
it affected the granularity of the search: if the step_size
became too low, the search to approach the goal node often
became lost or uncanny. If the step_size was too high,
it led to divergent, reckless behavior. After the goal node
was detected, the algorithm linked the goal to the starting

node based on the connections developed in the tree and its
overall growth. To optimize the performance, the space bar
was clicked, after which the program increased the number
of nodes utilized in the algorithm; thus, connections became
reevaluated, and nodes were adjusted to minimize the path
costs. This enhanced the algorithm’s capability to find near-
optimal paths while adapting to changes in the environment
or new information.

After completing the simulations, the code was altered to
allow for drone movement, using the Tello SDK 2.0 and
its relevant commands. In both the A* and RRT* codes, a
coordinate system was set up to help direct the drone to the
correct point. RRT* code can be referenced in section VII-B.

C. Bridging A* to DJI Tello EDU

Since A* employs rigid turning, as it is a grid-based
algorithm, the nodes were marked at exact distances away
from each other, so the entire path of nodes was determined
based on each node’s relationship to its precursor. As the drone
traversed through the defined path, it utilized the relationship
between each node (Right, Left, Forward, and Backward) to
determine its next movement. Using the coordinate grid was
essential because it helped determine which direction the drone
could move in a sequential manner. Based on these values, the
DJI Tello EDU was commanded to move in those respective
directions with a step size of 50 cm.

Fig. 3: A* Pathfinding Algorithm Implemented in Pygame

D. Bridging RRT* to DJI Tello EDU

Since RRT* is a sampling-based algorithm, meaning it
employs jagged movements rather than rigid turns, a system
of coordinates describing the nodes taken in the final path was
used to track the drone’s movement and, thus, the path it must
take. The go_xyz_speed allowed the drone to traverse from
node to node instead of in a specific direction. Notably, the
DJI Tello EDU had a hardware cap that prohibited it from
traveling less than 20 cm in two dimensions. For this reason,
the predetermined step size had to be enlarged so that the space

4

between nodes exceeded 20 cm. The algorithm, furthermore,
was commanded to undergo 30 iterations of optimization
before running the code to ensure that the path was near
optimal.

Fig. 4: RRT* Pathfinding Algorithm Implemented in Pygame

E. Constructing Randomized Mazes
Overall, 48 tests were conducted, 24 for each algorithm. For

each test, four metrics were analyzed: flight time, compute
time, flight distance, and margin of error (distance between
the drone’s final position and the goal node). The 24 tests
for each algorithm consisted of four distinct maze types:
single solution, ladder, high-density random obstacle, and
low-density random obstacle, all randomly generated three
times, with each maze being tested twice. However, generating
randomized mazes for both tests could provide an unfair
advantage to a specific algorithm’s performance if fewer turns,
for example, were required. Thus, once a maze was generated
for one of the algorithms, it was reused as the maze for the
second algorithm, forcing the two algorithms to run on the
exact same randomly generated maze.

By quantifying the performance of each algorithm across
various scenarios, advancements could be made in navigation
strategies, ultimately aiming to enhance the reliability and
efficiency of drone operations in real-world applications.

F. Setting Up Testing Environment for A* and RRT*
This paper aimed to bridge the gap between virtual and

real-world applications by transforming maze simulations into
physical replicas suitable for testing autonomous navigation
algorithms like A* and RRT*.

A conversion factor was employed to translate the dimen-
sions of the Pygame simulation in pixels to the dimensions
of the real-world testing environment in centimeters, ensur-
ing consistency across all maze types. Furthermore, using a
conversion factor helped pinpoint the exact positions of the
drone during experimentation to provide a general marker of
the path without having to do excessive mathematical calcu-
lations. Given that each maze shared identical dimensions, a

single physical model sufficed and could be used across both
algorithms. In the code, each grid space represented a value
of 50 cm in real life; thus, creating an 11 x 11 block maze
would result in a 5.5 by 5.5 meter maze, the boundaries of
which were carefully measured and marked with tape.

Vertical and horizontal tapes divided the outline into a
grid system, aligning with the virtual model’s grid nodes.
This approach facilitated rapid maze construction, crucial for
conducting many trials. At designated start and goal nodes,
marked with an ’X’, the midpoint was calculated. Placing the
drone precisely at the center of this grid ensured consistent
starting conditions across experiments [Fig. 5]. The accuracy
of these placements was essential for assessing each algo-
rithm’s performance, particularly in gauging the margin of
error (distance from the goal node to the drone’s final position)
inherent in autonomous navigation algorithms.

Fig. 5: Image of DJI Tello at its Starting Position

G. Calculation of Metrics

Quantifying the performance of A* and RRT* algorithms
involved measuring several critical factors to facilitate a com-
prehensive comparison. To minimize the effects of external
variables on test measurements, all tests were conducted on
the same laptop

Four key metrics were measured to accurately assess each
algorithm’s performance. Firstly, a stopwatch was used to
calculate the flight time, providing insights into how efficiently
each algorithm navigated through diverse maze configurations.
This measurement highlighted variations in traversal efficiency
based on the complexity of the paths generated by A* and
RRT*.

Secondly, the margin of error was evaluated by determining
the distance between the drone’s landing position and the
midpoint of the goal node. Both the x-coordinate and y-
coordinate displacement were measured to generate a direct
indicator of each algorithm’s precision in reaching its intended
destination within the maze. These outcomes revealed which

5

algorithm consistently achieved more accurate results across
different test scenarios.

Compute time represented the third critical metric, where
the time taken to set up the maze and the path the drone
would follow runs before the drone takes off. Comparing the
compute times between both algorithms provides insight into
whether one algorithm can perform faster and thus allocate
fewer resources. This way, modifications to the code can be
made quicker, which increases the developmental process.

Lastly, the total distance traveled by the drone was tracked
during each test run. This metric not only highlighted the
overall efficiency of each algorithm in terms of path optimiza-
tion but also provided a practical measure of how well they
managed the drone’s movements within the maze environment.

Systematic data collection through these measurements
aimed to objectively compare the effectiveness of A* and
RRT* algorithms across diverse scenarios. The insights gained
from these quantitative analyses contribute to refining au-
tonomous navigation strategies, enhancing their applicability
in various scenarios that potentially mimic real-world applica-
tions.

IV. RESULTS

Performance metrics across all tests showed a large varia-
tion of measurements, but certain patterns were consistently
observed throughout the different terrains.

A. Flight Times

Fig. 6: Average Flight Time of A* and RRT* in Different
Environments

The flight time measured the time the drone took to traverse
through the entire maze, from takeoff to landing.

The results in Figure 6 show that RRT*, on average,
took less time than A* to traverse through the paths in all
environments except single solution mazes. In single solution
mazes, the difference in flight times was negligible. This
difference in traversal time can be attributed to the algorithmic
differences in both pathfinding methods. Since A* is a grid-
based pathfinding algorithm, it is constricted to 90◦ move-
ments. This is not optimal in environments where many turns
are needed, such as high-density obstacle mazes. It is also not

optimal in open environments such as ladder mazes, or low-
density obstacle mazes because it will not be able to utilize the
open space to produce diagonal movement. In single-solution
mazes, much of the maze is made of obstacles and ninety-
degree turns, so the benefits of RRT* become more negligible.

B. Flight Distances

Fig. 7: Average Flight Distance of A* and RRT* in Different
Environments

The most important metric for this research was flight
distance, as each algorithm was optimized to find the shortest
route to the goal node. In all experiments, the drone’s theo-
retical flight distance from start to finish was measured. For
A*, each grid box was predetermined to be 50 centimeters
apart, allowing the distance to be counted post-testing. On the
other hand, the algorithm for RRT* would use its conversion
factor to translate the pixel distance between each node into
real-world distances.

Based on the data analysis, the flight distance for A* tended
to be 11% more than that of RRT*. This is because A* can
only travel along straight paths, no matter how optimized it
is. However, RRT* allows the drone to move diagonally and
travel closer to the walls, allowing for shortened distances
when traveling around corners and along stretches of open
space.

C. Compute Times
In every maze type, RRT* took three to five times longer

to compute than A*, as shown in Figure 8. This occurred
because RRT* continuously adds new nodes to the path
to further optimize it and shorten the distance between the
starting and goal nodes. Each experimentation for RRT* was
optimized 30 times, reforming the algorithm’s path length
without significantly damaging the computation time.

Out of all of the environments tested, RRT* had the largest
compute time in high-density mazes. This can be attributed to
it making more drastic path changes each iteration due to the
high density of obstacles.

There was no large variation across the same algorithm type
for the other mazes. Regardless of the type of maze utilized,
as long as the algorithm was the same, the compute time
remained relatively constant.

6

Fig. 8: Average Compute Time of A* and RRT* in Different
Environments

D. Margin of Error

Fig. 9: Box and Whisker Plots of Error

While testing the drone’s flight, it was found that there was
a median cumulative error of 48.7 cm as measured from the
center of the expected goal point to the landing point. Broken
down, it was found that A* had a median error of 58.6cm and
RRT* had a median error of 41.6cm. This is because while
traversing the grid through the coordinates dictated by both A*
and RRT*, each movement caused a small but noticeable drift.
This drift accumulated and led to a significant error when the
drone eventually touched down away from the expected goal
point.

Distance Traveled Average Error
50 cm 16 cm

200 cm 21 cm
350 cm 37 cm
500 cm 40.25 cm

TABLE I: Average Error Per Distance Traveled

According to Table 1, there was a positive correlation
between the distance traveled in a straight line and the error
from the expected endpoint. Since A* has a larger average
flight distance, as shown in Figure 7, this is the most likely
explanation for why A* has a higher margin of error than
RRT*.

V. CONCLUSION

A. Discussion

Pathfinding algorithms are becoming increasingly important
for autonomous drone navigation, as drones are becoming
capable of traveling through random paths without needing
human-based systems or a GPS. This study analyzed two
prominent pathfinding algorithms, A* and RRT*, in the con-
text of autonomous drone navigation through differing maze
environments.

The A* algorithm emerged as a robust solution to scenarios
where computation speed is the driving factor. It demon-
strated rapid convergence to the shortest path in all maze
environments but lacked efficiency in flight distance. Due to
its lack of computational resource usage, it is well-suited for
surveillance or inspection missions that necessitate a quick
response. Operations that necessitate speed in response and
have limited computing power rather than pinpoint accuracy
would benefit from employing this algorithm.

Conversely, the RRT* algorithm showcased a distinctive
approach rooted in sampling-based methods designed to ex-
plore environments with complex and unpredictable obstacles.
While RRT* exhibited longer computational times due to its
iterative path refinement process, it excelled in generating
paths that were notably smoother and more adaptable to unique
environmental conditions.

In practical applications, the choice between A* and RRT*
depends on the specific requirements of the mission and the
characteristics of the environment. A* remains the algorithm
of choice for scenarios where compute speed is paramount.
Although A* reflected a similar flight time to that of RRT*
in single solution mazes, its lack of need for computational
resources gives it a slight edge when navigating environments
similar to that type of maze. Some real-world examples
that A* would be optimal for include warehouse navigation
to conduct inventory, indoor three-dimensional mapping for
renovations, agricultural monitoring, and package delivery. Its
ability to compute optimal paths ensures rapid response times
and efficient resource utilization, making it valuable for small
and large-scale business use while keeping costs low as it
doesn’t require expensive hardware.

On the other hand, RRT* excels in environments where
path accuracy and adaptability are crucial, such as dynamic
urban settings or complex indoor environments. Despite its
longer computational times, RRT* offers superior performance
in navigating through varying environments, as seen through
its faster flight time and smaller error upon landing in three
out of four maze environments. RRT* is especially more ad-
vantageous in situations where precision is the most important
factor, such as dense forest, surveillance operations that require
radar avoidance, and search and rescue in tight spaces. The
algorithm’s ability to maneuver through small areas precisely
makes it a valuable tool when working with areas where it
would be dangerous to send humans.

RRT* also has the advantage of handling multidimensional
spaces, which can aid tremendously in applications such as 3D

7

mapping. While A* must map out the state space with a grid
and therefore suffers from the curse of dimensionality as the
number of nodes needed to be committed to memory increases
drastically with the addition of new dimensions, RRT* excels
when paths are not simply represented and include more non-
convex areas.

B. Future Work

Although both search algorithms generated success in
pathfinding, there are still limitations regarding predictive
performance and UAV utilization. Utilizing different types
of drones, including those suffering from over-actuated and
under-actuated performance, could help with future in-depth
experimentation. For example, testing with a quadrotor or
VTOL tailsitter, such as the WingtraOne Gen II, which confers
a more passive control design and lighter power expenditure,
ensure the drone’s performance would not be compromised by
weaker structural integrity. Furthermore, over-actuated testing
using designs with redundant fault tolerance and complex
maneuvers (thus requiring more computational power) would
ensure that a large power expenditure will not reduce the
success of the algorithms. This testing can be done with
designs similar to octocopters or hybrid VTOLs, such as the
Autel Dragonfish [15]. The construction of the drone that is
employed can provide another way of monitoring the success
of both pathfinding algorithms and tailoring the needs of the
drone to specific applications. For example, using materials
such as Fiber Flax or fiberglass to construct a quadrotor
chassis can increase durability and flexibility in more intense
environments. Moreover, using Depron for aileron construc-
tion can increase the rotational movement of the drone, such
that multiple sides must include attachments (i.e., agricultural
precision).

Furthermore, the current model functions off a preplanned
algorithm, where waypoints are defined so the robot can
traverse through the maze. In other words, the robot’s move-
ment is controlled by itself and not the recognition of its
surroundings. In the future, reducing the number of waypoints
through artificial vision could be utilized in the algorithm
to increase accessibility in various applications, especially
in remote locations where GPS coordinates might not be
properly defined. Integrating a LiDAR or IMU sensor gives
the DJI Tello EDU the ability to send constant updates of
linear acceleration, angular velocity, and ranges of light to
the DJI Tello EDU SDK, which can increase its autonomous
abilities. Using an IMU sensor, which usually consists of a 3-
axis magnetometer, accelerometer, and gyroscope, the drone
can analyze its three-dimensional position relative to its envi-
ronment [16]. Similarly, a LiDAR could also be incorporated
to improve on the drone’s artificial vision. A LiDAR sensor
uses remote sensing technology as pulsed lasers to measure
the drone’s orientation relative to the Earth. These light pulses
produce a 3-dimensional image of the environment, improving
the drone’s ability to fly through an unfamiliar environment.
Generally, the usage of drones alongside LiDAR produces the
benefits of precise distance measurements, enabling the ability

of precise data collection of surroundings [17]. This, once
again, could enhance the autonomous ability of the drone and
potentially reduce the amount of waypoints required in the
algorithm.

The mazes used in this research represent a wide range
of possible environments for the drone to find itself in, but
it is not all-encompassing. The ladder, single solution, and
random obstacle mazes can represent city, interior, and forest
environments. These mazes allow for data on real-life parallels
relating to everything from urban drone delivery systems to
search and rescue in varying environments [18]. It is necessary
to expand these situations to other types of natural habitats and
various man-made structures. For example, maze generation
algorithms that create paths that loop in on themselves would
be useful for representing wider or more complex indoor struc-
tures. Three-dimensional mazes would also be useful in testing
the storage demands of the two algorithms as the spaces get
exponentially larger. Changing the maze generation and, thus,
the real-world applications would also unlock possibilities for
using new kinds of drones and algorithms. The ability to
diversify important parameters allows autonomous navigation
to be constantly improvable and applicable to all types of
circumstances.

Implementing these techniques would give the drone com-
plete autonomy, allowing it to navigate multiple environments.
Furthermore, it would expand the algorithm to be utilized
across various types of UAVs as the bridging commands are
altered respectively.

VI. ACKNOWLEDGEMENTS

The success of this research would not have been possible
without aid from various individuals. Foremost, this paper’s
authors would like to thank Rutgers University, Rutgers School
of Engineering, and the Governor’s School of New Jersey
Program in Engineering and Technology for providing them
with the opportunity to conduct this research, as well as
Lockheed Martin for sponsoring the program. The authors of
this paper would like to express gratitude to project instructor
Shreya Srikanth for her guidance and mentorship throughout
this research process, as well as Hugh Keenan, the group’s
Residential Teaching Assistant, for his monitoring and advis-
ing of group members. They would also like to thank the
New Jersey Office of the Secretary of Higher Education and
the Governor’s School of New Jersey Program in Engineering
and Technology’s alumni for funding and supporting the
following research. In addition, the authors appreciate the
insights contributed to their research by project instructor
Shreya’s lab partner, Arvind Kruthiventy, and professor Dr.
Laurent Burlion for his guidance and provision of essential
resources from the D-141 Advanced Controls Laboratory at
Rutgers University. The authors are also grateful to Vikram
Setty for providing permission to use his A* and RRT* code
as a foundation for the drone’s algorithms. Furthermore, they
acknowledge Jean Patrick Antoine, the Associate Director of
NJ Governor’s School of Engineering and Technology, and
Dean Ilene Rosen, the Director of the NJ Governor School

8

of Engineering and Technology, for their tremendous support
during the project. They would also like to thank DJI Tello
and Visual Studio Code for providing them with the hardware
and software necessary for this project.

VII. APPENDIX

The code utilized to create both pathfinding algorithms
can be found under the following GitHub repository:
https://github.com/nrgameace/GSETAutonomousDroneResearchProject.

9

A. A* Algorithm Code
def algorithm(draw, grid, start, end):

count = 0
open_set = PriorityQueue()
open_set.put((0, count, start))
came_from = {}
g_score = {block: float("inf") for row in grid for block in row}
g_score[start] = 0

f_score = {block: float("inf") for row in grid for block in row}
f_score[start] = h(start.get_pos(), end.get_pos())

open_set_hash = {start}

while not open_set.empty():
for event in pygame.event.get():

if event.type == pygame.QUIT:
pygame.quit()

current = open_set.get()[2]
open_set_hash.remove(current)

if current == end:
reconstruct_path(came_from, end, draw)
end.make_end()
return True

for neighbor in current.neighbors:
temp_g_score = g_score[current] + 1

if temp_g_score < g_score[neighbor]:
came_from[neighbor] = current
g_score[neighbor] = temp_g_score
f_score[neighbor] = temp_g_score + h(neighbor.get_pos(), end.get_pos())
if neighbor not in open_set_hash:

count += 1
open_set.put((f_score[neighbor], count, neighbor))
open_set_hash.add(neighbor)
neighbor.make_open()

draw()

if current != start:
current.make_closed()

return False

B. RRT* Algorithm Code
def rrt_algorithm(viz_window,start_node,goal_node,obstacle_list):

distanceTheoretical = 0
node_list = []
node_list.append(start_node)
erase_list = []
run = True
while run:

new_node, node_list = add_new_node(viz_window,node_list,obstacle_list)
if target_reached(new_node,goal_node):

goal_node.parent = new_node
pygame.draw.line(viz_window,BLUE,(new_node.x,new_node.y),(new_node.parent.x,new_node.parent.y))
node_list.append(goal_node)
display_final_path(viz_window,goal_node)
run = False

10

REFERENCES

[1] Y. Hong, J. Fang, and Y. Tao, “Ground control station development
for autonomous uav,” in Intelligent Robotics and Applications: First
International Conference, ICIRA 2008 Wuhan, China, October 15-17,
2008 Proceedings, Part II 1. Springer, 2008, pp. 36–44.

[2] Mordor Intelligence, “Uav navigation systems market
- growth, share & analysis 2024,” 2024. [On-
line]. Available: https://www.mordorintelligence.com/industry-reports/
uav-navigation-systems-market

[3] DJI Store, “Official store for dji drones, gimbals and accessories
(united states),” 2024. [Online]. Available: https://store.dji.com/product/
tello-edu

[4] R. Tech, “Tello sdk 2.0,” 2018. [Online]. Avail-
able: https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%
202.0%20User%20Guide.pdf

[5] Pygame, “pygame: A free and open source python programming
language library for making multimedia applications like games
built on top of the excellent sdl library,” 2024. [Online]. Available:
https://github.com/pygame/pygame

[6] A. Javaid, “Understanding dijkstra’s algorithm,” Available at SSRN
2340905, 2013.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Journals &
Magazines, vol. 4, no. 1, pp. 100–107, 1968. [Online]. Available:
https://ieeexplore.ieee.org/document/4082128/

[8] B. M. Sathyaraj, L. C. Jain, A. Finn, and S. Drake, “Multiple uavs
path planning algorithms: a comparative study,” Fuzzy Optimization and
Decision Making, vol. 7, pp. 257–267, 2008.

[9] YouTube, “Video title,” Mar 2015, youTube video. [Online]. Available:
https://www.youtube.com/watch?v=g024lzsknDo

[10] S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhachev,
“Multi-heuristic a,” The International Journal of Robotics Research,
vol. 35, no. 1-3, pp. 224–243, 2016.

[11] J. Ding, Y. Zhou, X. Huang, K. Song, S. Lu, and L. Wang, “An improved
rrt* algorithm for robot path planning based on path expansion heuristic
sampling,” Journal of Computational Science, vol. 67, p. 101937, 2023.

[12] I. Noreen, A. Khan, and Z. Habib, “A comparison of rrt, rrt* and
rrt*-smart path planning algorithms,” International Journal of Computer
Science and Network Security (IJCSNS), vol. 16, no. 10, p. 20, 2016.

[13] Z. H. Iram Noreen, Amna Khan, “Optimal path planning using rrt*
based approaches: a survey and future directions,” International Journal
of Advanced Computer Science and Applications, vol. 7, no. 11, 2016.

[14] M. Zhou, “mmaze: A python maze generator and solver,” 2023.
[Online]. Available: https://github.com/MorvanZhou/mmaze

[15] M. Hassanalian and A. Abdelkefi, “Classifications, applications, and
design challenges of drones: A review,” Progress in Aerospace
Sciences, vol. 91, pp. 99–131, 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0376042116301348

[16] K. S. Hatamleh, O. Ma, A. Flores-Abad, and P. Xie, “Development
of a special inertial measurement unit for uav applications,” Journal of
Dynamic Systems, Measurement, and Control, vol. 135, no. 1, p. 011003,
2013.

[17] K. Amer, M. Samy, M. Shaker, and M. ElHelw, “Deep convolutional
neural network based autonomous drone navigation,” in Thirteenth
International Conference on Machine Vision, vol. 11605. SPIE, 2021,
pp. 16–24.

[18] B. Shen, “Advances in pathfinding algorithms for games, route plan-
ning software, and automated warehouses,” Ph.D. dissertation, Monash
University, 2023.

[19] V. Setty, “A demonstration with visualisation/gui for
robot path planning algorithms like a*, rrt, rrt*,”
gitHub. [Online]. Available: https://github.com/vikrams169/
Autonomous-Robot-Path-Planning-Using-A-star-RRT-and-RRT-star

11

